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The lattice thermal conductivities of Mg,Si and Mg.Sn have been analyzed in the
entire temperature range 2— 1CC0 K in the frame of the expression for the three-
phonon scattering relaxation rate recently proposed by Dubey and Misho, and a very
good agreenent is found between the calculated and the experimental values of the
lattice thermal conductivity in the entire temperature range of the study. The separate
contributions due to transverse and longitudinal phonons towards the total lattice
thermal conductivity have also been studied by calculating their percentage con-
tributions. The percentage contributions of the three-phonon normal and umklapp
process scattering relaxation rates towards the three-phonon scattering relaxation rate
have been studied for both Mg,Si and Mg,Sn. The percentage contribution of the
three-phonon scattering relaxation rate towards the combined scattering relaxation
rate has also been studied for transverse as well as for longitudinal phonons, for four
different values of the phonon frequencies. The role of the four-phonon processes is
also included in the present analysis.

It has been well established that the phonon-phonon scattering relaxation rate
plays a very important role in the study of the lattice thermal conductivity of an
insulator. Due to the complex structure of the Brillouin zone and the strong
temperature-dependence of the phonon distribution function, the three-phonon:
scattering relaxation rate displays a complicated dependence on the phonon
frequency and temperature. As a result, even at present, we lack an exact analytical
expression for it. For practical purposes, there is a need to express the scattering
relaxation rate by simple relations. Three-phonon scattering processes have been
studied by several workers [1 —11] and it has been found that they can be divided
into two groups: a normal process (N-process) in which momentum is conserved,
and an umklapp process (U-process) in which momentum is not conserved. The
lattice thermal conductivities of a number of samples have been calculated by
several workers [5— 25] by using simple expressions for the three-phonon scattering
relaxation rates as a function of the phonon frequency and temperature. These
expressions are listed in Table 1. However, due to complications, none of the previ-
ous workers has included the contributions due to both N and U-processes in the
same conductivity integral.

Recently, considering the contributions of both N and U-processes, Dubey and
Misho [26] proposed a new expression for the three-phonon scattering relaxation
rate:

Tk = (Bu + By e Ty g(w) T™
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36 DUBEY: LATTICE THERMAL CONDUCTIVITIES

Table 1

The scattering relaxation rates. In these expressions, B’s are constants and are known as the

scattering strengths of the respective processes, L is the Casimir length of the crystal, 4 is

the point-defect scattering strength, v is the average phonon velocity, «is a constant, @ is the
Debye temperature and gy, is the zone boundary of the first Brillouin zone

Scattering processes Relaxation rates
Crystal boundary? ' = o/L
Impurities® 1t = Awt
“Three-phonon processes T;ph
“Normal processes® (N-processes) Tah, N
“Transverse T = BywT*
Longitudinal ol = BuwiT® at low temperatures
“Transverse o = BiwT .
Longitudinal TEE _ B{wZT at high temperatures
Umklapp processes (U-processes) Tinh U
’Klemens“ TGI — BUW2T3€_@/°‘T 7
Klemenst 15! = BywTe—9T at low temperatures
Holland? (for transverse) 15! = Bruw¥sinh(hw/kgT) 1 Grax — Gmax
1o 0 —
Ty 3 Imax

Callaway® 5! = BwiT?®
Klemens® 5! = B{w'T at high temperatures
Joshi and Verma' (transverse) Tph = BywT™ 0 — Gimax

(longitudinal) TiphL = BywiT™ 0 — Gmax
SDV! (transverse) Tophr = By wT™T, 1M =074 0 — Goax

(longitudinal) Tiph L = By Wi T™L 1M —/oT

_ + By gw?T™L,IIMe =0T 0 — Grnax
Four-phonon processes* Tk = Bw'T? at high temperatures
3 — ref. 41, b refs.4and 2, © — ref. 1, ¢ — ref. 3, ¢ — ref, 2,
1 _ ref. 6, & — ref. 5, b ref, 2, 1 — ref. 11, t — refs. 8—10

¥ _ refs. 30—32

and is found [26—29] that this gives a good response to the experimental lattice
thermal conductivity data. The terms are explained in the following section.
The aim of the present work is to calculate the lattice thermal conductivities of
Mg,Si and Mg,Sn in the temperature range 2—1000 K in the frame of the ex-
pression for the three-phonon scattering relaxation rate proposed by Dubey and
Misho [26] as stated above. The separate contributions of transverse and longi-
tudinal phonons towards the total lattice thermal conductivities of Mg,Si and
Mg,Sn have also been studied by calculating their percentage contributions.
The percentage contributions of the three-phonon N and U-process scattering
relaxation rates towards the three-phonon scattering relaxation rate 73, have been
studied for both samples. The percentage contribution of 73} towards the com-
bined scattering relaxation rate has also been studied for four different values
of the phonon frequencies for both modes, transverse and longitudinal phonons,
and also for Mg,Si as well as Mg,Sn.
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DUBEY: LATTICE THERMAL CONDUCTIVITIES 37

The contribution of the four-phonon scattering processes [30—32] towards
the total lattice thermal resistivity is also included at high temperatures in both
of the samples.

A short feature of the Dubey and Hisho approach to lattice thermal
conductivity

The phonon-phonon scattering processes dominate over other scattering proc-
esses at high temperatures and are not negligibly small at low temperatures.
They play an important role even in the vicinity of conductivity maxima. How-
ever, it is difficult to express the three-phonon scattering relaxation rate 3.}, by
a simple relation, due to the complicated structure of the Brillouin zone and the
strong temperature-dependence of the phonon distribution function. Several
expressions have been proposed for the three-phonon scattering relaxation rate
for N and U-processes as a simple function of the phonon frequency w and tem-
perature T’; these are reported in Table 1. It is clear from Table 1 that the scattering
relaxation rate is different for transverse and longitudinal phonons. The frequency-
dependence of T3y is w for transverse phonons and w” for longitudinal phonons.
The Callaway expression is an exception, due to the fact that he does not make any
distinction between transverse and longitudinal phonons. From Table 1, it is also
clear that the expression for 3, for U-processes contains an exponential factor.

Using these scattering relaxation rates, several workers [5—25, 33—40] have
calculated the lattice thermal conductivity for different samples. The expressions.
they used for the combined scattering relaxation rates are reported in Table 2.
From Table 2, it is clear that, due to the complicated role of N and U-processes,
none of them has included the contribution due to both processes in the same con-
ductivity integral, i.e. they have used either 7.} n OF T3,y in one conductivity
integral to calculate the lattice thermal conductivity of a sample. From Table 1,
it is clear that the three-phonon scattering relaxation rates Tpmn and Ty u
for N and U-processes, respectively, can be expressed as

TN = Bng(w) ™ 0y
Tiphu = By g(W) ™ e=OkT (2)

where By and By are the scattering strengths due to the respective processes,
g(w) represents the frequency-dependence of the three-phonon scattering relaxation
rates, which is w for transverse phonons and w?® for longitudinal phonons, @ is
the Debye temperature of the specimen under study, « is a constant and m is the
temperature exponent of the scattering relaxation rates. The same value of m
has been assigned to both processes by Dubey and Misho, due to the fact that the
Guthrie calculations [7] show equal values of m for N and U-processes and it can
be calculated with the help of the Guthrie expression. Thus, the combined scat-
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38 DUBEY: LATTICE THERMAL CONDUCTIVITIES

Table 2

The combined scattering relaxation rates. In these expressions, w, and w, are the transverse
phonon frequencies at 4 ¢pn.x and g,.x, respectively, w; and w, are the same for longitudinal
phonons, wp is the Debye frequency and other terms have the same meanings as stated in

Table 1

Combined scattering relaxation rates Fr:tax;lxz:cy
Callaway?® ot =15+ ot + (B, + B)wT? 0 — wp
Hollad® oh=1m'+ 15t + BawT? 0 — w,
14 = 1t + Tt + Byew¥sinh(hw/kiT) Wi — Wy
oL = el + Tl + BywtT? 0 —w,
Joshi and k=1t + 15 + BywI™ 0 —w,
Verma® Tol = '+ 13t + BuwiT™ 0 —w,

(m =1, 2, 3 and 4, depending on the temperature

range)

SDV model® ok = 15l + 15t + By wT™ T, De—07F 0 —wy

1ot = 15l 4 1l + By wiTML,I®e 0T
+ By "L I[P ~0=T 0
Dubey and ol = 15t + 1! + (Byn + Bree~ ¥ hwT™ 0 — w,
Misho® oL = Tg' + 150+ (Bin + B, ye =0 Tyy2rm 0
(present work)
(m = 1—4 for transverse phonons and 1— 3 for longi-
tudinal phonons, depending on the temperature

range.)
2 — ref. 5.
b _ ref. 6.
¢ — ref. 11.
4 — refs. 8—10.
€ — refs. 26—28.

tering relaxation rate for T5ph can be expressed [26] as
Tigh = TiphN T Tiphu = (Bx + By e ) gw) T™ )

Therefore, the combined scattering relaxation rate 7 for transverse phonons
is given [26] by

T4 = 15" + T + (Brn + Bry e ) wI™ 4)
and for longitudinal phonons by
Toh = 8"+ T + (Bun + BLye I Q)

where 13" and t;' are the scattering relaxation rates due to boundary [41] walls
of the crystal and point-defect [4], respectively, and the expressions for these
scattering relaxation rates are those of Casimir [41] and Klemens [4], respectively,
listed in Table 1. Suffixes T and L represent transverse and longitudinal phonons,
Tespectively.
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DUBEY: LATTICE THERMAL CONDUCTIVITIES 39

The complete separate expression for transverse and longitudinal phonons for
the combined scattering relaxation rates, which have been used in the present
analysis, are reported in Tables 3 and 7 for Mg,Si and Mg,Sn, respectively.

The value of m varies from 1 to 4 for transverse phonons and [ to 3 for longi-
tudinal phonons, corresponding to the different temperature ranges. The complete
expressions for 73}, and 7; ' used in the present analysis of the lattice thermal
conductivities of Mg,Si and Mg,Sn are reported in Tables 3 and 7, together with
the temperature ranges. In these Tables, it is found that different values of the
three-phonon scattering strengths have been used in the different temperature
ranges. However, these scattering strengths (B’s) are related to each other by tem-
perature, as suggested by Joshi and Verma [11]. Thus, in the new approach of
Dubey and Misho, only one adjustable parameter has been used for the three-
phonon scattering strength, similarly as in the previous analysis.

Besides the three-phonon scattering processes, four-phonon processes [30—32]
also play an important role in the calculation of the lattice thermal conductivity
of an insulator at high temperatures. According to Pomeranchuk [30-32],
the four-phonon scattering relaxation rate is given by

Tgph = BaW’T? 6)

where B is the four-phonon scattering strength. Thus, the combined scattering
relaxation rate in the presence of the four-phonon scattering processes can be
expressed as

-1 _ _—1 —1 —1 1
. = 1 + Tpt + r3ph + t-lph (7)

Considering the spherical symmetry of the Brillouin zone (i.e. out of three
polarization branches one is longitudinal and two are transverse) and the fact
that each phonon contributes separately towards the total lattice thermal con-
ductivity, the contribution of each mode of phonons can be expressed [26] as

K = (1/67%) | 1 ;03 (h*w*lkgT?) exp (nw/kgT) (exp (hw/kgT) — 1)7° ¢* dg + 4K
(8)

where integration is performed over the first Brillouin zone, v,: is the group
velocity corresponding to the polarization branches under study, ¢ is the phonon
wave vector corresponding to the phonon frequency w, kg is the Boltzmann con-
stant, % is the Planck constant divided by 2x, 7, is the combined scattering re-
laxation time and 7 represents the polarization branches of phonons under study.
The term AK is known as the correction term [5] due to the three-phonon normal
processes; it reduces to zero in the absence of the three-phonon normal processes.
It has been studied by a number of workers [42—52] and it is found that the con-
tribution of 4K towards the total lattice thermal conductivity is very small [42—
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40 DUBEY: LATTICE THERMAL CONDUCTIVITIES

Table 3
Combined scattering relaxation rates used in the analysis of the lattice thermal conductivity

of Mg,Si

Expressions Ten;gzrgtture

Combined scattering relaxation rates for transverse phonons 7o %
@EYE+ Awt + (Brn + Bru e NwTt + Bygw?T? T< 80
@Y + Awt + (Bong + Broe~ @ DwT? + Byw?T? 80 < T< 103
@l + Awt 4+ (Brne + Brose~%*DwT2 + Byyw T? 103 < T< 150
(@301 + AWt + (Bing + Bruse~ @ DOwT 4 Bpw?T? T< 150
Combined scattering relaxation rates for longitudinal phonons rg{
(EDL + Awt + (Bin + Bry e~ Nw2T3 4+ By wiT? T< 103
@EDL + AWt + (Biaa + Bruie " DweT? + By wiT? 103 < T< 150
(DL + Awt 4+ (Beng + Bruse™®*DwiT + By w?T? T< 150
The three-phonon scattering strengths (B’s) are related to each other as®

BTXI = SOBTX 'BIXI = 103B]'.X
Bry, = 103Bx, Bygs = 150B1x,
Biys = 150Bx,

where X stands for N and U.
By and By are related by®
Byn = Byy exp (—©/«T), where T = 300 K and Y stands for Tand L

a — ref. 11.
b _ refs. 26—28.

491 in the frame of the Callaway [5] integral, as well as in the frame of the gene-
ralized [53—55] Callaway integral at low and at high temperatures, and one can
neglect its contribution compared to the contribution due to the first part in Eq.
(8). Solid He [50], LiF [51] and solid HD [52] are exceptions to this.

Following Verma et al. [56], Dubey and Misho [26] used a better relation
q = (W/v) (1 + rw?) to express ¢ in terms of w in the above integral, where r is
a constant which depends on the dispersion curve of the sample; it can be cal-
culated with the help of the experimental dispersion curve. Thus, the total lattice
thermal conductivity can be expressed as

K=KT+KL (9)
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where Kt and K are the contributions due to transverse and longitudinal phonons,
respectively, these contributions being given by

o1|T
Ky = (Clor) | topxte(e* — D72 (1 + R®? (1 + 3R ¥ dx +
0
02]T
+ ([Clvps) | torx'e(e* — D721+ Rx®* (1 + 3R®) " dx  (10)
01T
a3/T

K = (Gfor) | tooxte(e* — 172 (1 + Rex®? (1 + 3Ryx?)1dx +
0

[@4/T
+ (Cyfv1s) f Texte e — 1721 + R’ (1 + 3R xH 1 dx (1D
63/T
where C = 2C, = (kg/3%%) (kgT/h)’, R, = ry(keT/R):, O, = (hwylkg), x =
= (hw/kgT)and n = 1, 2, 3and 4, vr; and vy, are the transverse phonon velocities
in the range 0—1/2 ¢,... and 1/2 ¢,... — e TESPectively, vy, and vy, are the same
for longitudinal phonons, w, and w, are the transverse phonon frequencies cor-
responding to the phonon wave vector 1/2 g, and g,,,,, respectively, ws and w,
are the same for Jongitudinal phonons, ¢,,, corresponds to the zone boundary
of the first Brillouin zone, r, and r, are the dispersion constants for transverse
phonons in the ranges 0—1/2 ¢, and 1/2¢,.. — Gm.,, respectively, and 7,
and r, are the same for longitudinal phonons.

Lattice thermal conductivity of Mg, Si

The constants relating to the dispersion curve are calculated with the help of
the experimental dispersion curve measured by Whitten et al. [57]. It is known
that at very Jow temperature the entire lattice thermal resistivity is due to the
boundary scattering alone, and one can calculate the Casimir [41] length of the
crystal at such temperature. Thus, (t5%)r and (15%), are calculated at 4 °K with
the help of the Casimir length of the crystal. From the values of these two con-
stants, the point-defect scattering strength A has been calculated at 6 K. The
value of the temperature exponent m has been calculated with the help of the
Guthrie expression (see Eq. (17) of ref. 7).

As far as the three-phonon scattering strengths are concerned, they involve
complications due to the fact that both N and U-processes are included in
the same conductivity integral in the present study. From the earlier reports of
the previous workers, it is clear that 73},  dominates over Taph,u at low tempera-
tures. Keeping in view the above fact and ignoring the contribution of 3.} v
towards the combined scattering relaxation rate, Byyand B,y have been calcul-
ated at 20 K (near the conductivity maxima). It has also been found that at high
temperatures, 3.}, v dominates over 73y, n. Therefore, Dubey and Misho assumed
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42 DUBEY: LATTICE THERMAL CONDUCTIVITIES

equal contributions due to these two processes at room temperature. Thus,
following Dubey and Misho [26}, using the relation 75,y = Taphu at 7 = 300K
and including the contribution due to three-phonon umklapp processes too, Bry
and By are finally calculated at 20 K by numerical integration of the conductivity
integrals given in the previous section.

Table 4

The constants used in the analysis of the lattice thermal conductivities of Mg,Si and Mg,Sn
in the entire temperature range 2— 1000 K

Constants Mg,Si Mg,Sn

vy (cmsec™) 4.60 - 10° 3.19 - 108
Vg (cm sec™?) 1.40 * 10° 1.16 - 10°
vy; (cmsec™) 6.40 - 10° 4.30 - 10°
Uis (cm sec™) 5.10 - 10° 2.05 - 10°
6, CK) - 154 90

6. (CK) 224 118

v, (K) 254 138

e, (K 392 176

Olz  (°K) 250 225

r (sec?) 3.250 - 1028 1.788 - 10~%
Ty (sec?) 6.428 - 10— 3.776 - 1027
ry (sec?) 1.019 - 10— 3.363 - 10728
Ty (sec,) 8.804 - 10—2 1.388 - 10~%
(tg Yt (sec™) 5.68 - 10° 1.21 - 108
(rg L (sec™) 7.90 - 10% 1.21 - 108

A (sec?) 8.0 10718 1.6 -10~4
By (deg™ 1.12 - 10~ 477 - 101
By (secdeg™@) 1.20 - 1022 7.20 - 1022
Byr (sec deg™? 2.0 -10-% 6.0 1022
By (sec deg™?) | 2.0 10~ 6.0 -10—2
o A - 40

44 V) — 5010

0 (g cm™9) — 3.592

Nex - 2.4 10718
H (sec~ldeg—?) — 2.7 - 108

From the three-phonon scattering strengths, the lattice thermal conductivity
has been calculated and it has been found that the calculated value of the lattice
thermal resistivity is lower than the experimental value; this is due to the contri-
bution of the four-phonon processes. Thus, the four-phonon scattering strengths
Byt and By; are adjusted at 300 K.

From all the constants reported in Table 4 and the combined scattering re-
laxation rates in Table 3, the total lattice thermal conductivity of Mg,Si has been
calculated in the entire temperature range 2—1000 K by calculating separate
contributions due to transverse and longitudinal phonons with the help of numer-
ical integration of the conductivity integrals given in Egs. (10 and (11), and the

J. Thermal Anal. 18, 1980



DUBEY: LATTICE THERMAL CONDUCTIVITIES 43

result obtained is shown in Fig. 1. The percentage contributions of transverse and
longitudinal phonons towards the total lattice thermal conductivity have also been
calculated, and the results obtained are shown in Fig. 2. To study the roles of
three-phonon N and U-processes, the percentage contributions due to the three-
phonon normal process scattering relaxation rate (%75, ) and the three-phonon
umklapp process scattering relaxation rate (%rgplh’u) towards 7y, have been
calculated in the entire temperature range of study, and the results obtained are
shown in Fig. 3. The percentage contribution of the three-phonon scattering re-

A

00—

K, Watt/deg fcm

o Experimental points
—— Calculated valves

Mg-> Sn

[ [ OO S I
0 Z ) 46 " 100 200 1000

Temperature , K

Fig. 1. The total lattice thermal conductivity of Mg,Si in the temperature range 2 — 1000 K.
The solid line represents the calculated values, and circles are the experimental points

_—

3
s}

80

Percentage contributions of Ky and K

| |
4 10 40 100 400 1000
Temperature , K

Fig. 2. The percentage contributions due to transverse and longitudinal phonons towards the
total lattice thermal conductivity of Mg,Si. The solid line represents the percentage contribu-
tion due to transverse phonons, while the dotted line is that due to longitudinal phonons
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3
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Fig. 3. The percentage contributions due to three-phonon N and U-process scattering relaxa-

tion rates towards 73, for Mg,Si. The dotted line is the percentage contribution due to the

three-phonon normal process scattering relaxation rate (%7shn), and the solid line is that
due to three-phonon umklapp processes

Table §

The percentage contribution of the three-phonon scattering relaxation rate 7, r towards

the combined scattering relaxation rate z2% for transverse phonons for Mg,Si in the absence

of four-phonon processes, for four different values of the phonon frequencies. wy,, is the
maximum frequency of the transverse phonons

I K % t3nh, T % T3on, T % Tiph, T % Tion, T
’ for w = Yswmax | for w = 1/2wmax | for w = 3/dwmax | for w = wmax
1000 99.997 99.992 99.977 99.947
900 99.997 99.991 99.974 99.940
800 99.996 99.990 99.970 99.922
700 99.996 99.988 99.965 99.920
600 99.995 99.986 99.958 99.903
500 99.993 99.982 99.947 99.877
400 99.991 99.976 99,929 99.835
300 99.987 99.965 99.894 99.755
200 99.976 99.937 99.809 99.599
100 99.900 99.728 99.183 98.124
90 99.854 99.612 98.839 97.344
80 99.785 99.427 98.293 96.124
70 99.621 98.994 97.028 93.358
60 99.280 98.102 94.488 88.068
50 98.490 98.068 89.018 77728
40 96.353 90.825 76.658 58.574
30 89.279 75.729 50862 | 30.827
20 62.179 38.118 16.968 | 8.087
10 9.318 3.707 1.261 0.547
8 4.039 1.552 0.520 0.224
6 1.314 0.496 0.165 | 0.071
4 0.262 0.098 0.032 | 0.014
2 0.016 0.006 0.004 0
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Table 6

The percentage contribution of the three-phonon scattering relaxation rate ;% ; towards

the combined scattering relaxation rate 77} for longitudinal phonons for Mg,Si in the absence

of four-phonon processes, for four different values of the phonon frequencies. wy,, is the
maximum frequency of the longitudinal phonons

_— % i1 % ok, %th | %TEhL
' for w = 1/4wmax | for w = 1/2wpax | forw = 3/dwmax | for w = wpay
1000 ’ 99.997 99.990 99.977 99.959
900 f 99.996 99.988 99.974 | 99.914
800 | 99.995 99.986 99.970 99.947
700 } 99.995 99.984 99.965 99.938
600 99.994 99.981 99.957 99.925
500 ' 99,992 99.976 99.946 99.905
400 99.989 99.967 99.928 99.873
300 99.984 99.952 99.893 99.811
200 99.971 99.913 99.807 99.658
100 99.874 99.624 99.172 98.543
90 99.821 99.464 98.823 97.934
80 99.735 99.210 98.272 96.976
70 99.592 98.786 97.355 95.407
60 99.335 98.033 95.754 92.713
50 98.834 96.584 92.751 87.834
40 97.724 93.427 86.631 78.523
30 94.749 85.750 78.110 60.575
20 84.234 \ 64.055 44.642 31.272
10 40.043 18.217 9.157 5.381
8 25.482 { 10.237 4.908 2.830
6 12.607 | 4.590 2.131 1.214
4 4099 1.406 0.641 0.363
2 0.531 i 0.178 0.081 0.045

laxation rate %rgplh towards the combined scattering relaxation rate 7 * has been
studied in the entire temperature range 2 — 1000 K in the absence of four-phonon
scattering processes, for the four different values of the phonon frequencies
w = 1/4 Wyueo 1/2 Weaxs 3/4 Wiax and wy,,,, for transverse as well as for longi-
tudinal phonons, to examine the dominating nature of 75, over t3' and 7./, and
the results obtained are reported in Tables 5 and 6, where wy,,, is the maximum
phonon frequency in the first Brillouin zone corresponding to the phonon modes

under study.

Lattice thermal conductivity of Mg,Sn

The sample of Mg,Sn taken in the present analysis displayed neutral donor
scattering, as predicted by Martin and Denielson [58]. Therefore, before the detail
of calculations, it is necessary to give a short account of the resonant phonon
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scattering mechanism which has been introduced in the analysis of the lattice
thermal conductivity of Mg,Sn as an extra scattering mechanism, unlike that of
Mg,Si; it plays a very important role in the calculation of the lattice thermal con-
ductivity of the present sample at low temperatures. Martin and Denielson [58]
vsed the w* dependence for the resonant phonon scattering relaxation rate .2,
which is not valid for Aw » 44 and kT > 44 in their previous study; 44 is the
energy separation between the ground state and next higher energy state. The
resonant scattering relaxation rate has been studied by different workers [59 —63].
In the present work, the modified expression of Kumar and Verma [64] for ;!
has been used to analyse the lattice thermal conductivity of Mg,Sn. According
to the modified expression of Kumar and Verma [64], the resonant phonon scat-
tering relaxation rate can be expressed as

171 = 17 (elastic) + 77 (inelastic) (12)
1 (elastic) = HFYqW® [fy(T) (hwjk T) + f(T) for hiw < 44 (13)
771 (inelastic) = H{F*%q) (44/k,T) (44/%)* f(T) for Aiw < 44 (14)
771 (elastic) = HyFY{gw® [fo(T) + f(T)] for hw > 44 (15)
1 (inelastic) = HiF gw® [fT) + fT)] for fiw > 44 (16

where ;! (elastic) and 1, ' (inelastic) are the scattering relaxation rates due to
elastic and inelastic resonant phonon scattering processes, respectively, f(T) and
[f(T') are the populations of the ground state and next higher energy state, respect-
ively, and F(q) is known as the form factor, which is given by

F(g) = (1 + rgw/40™)~" (17)

where r, is the average radius of the donor orbit. Since our interests lie in the region
hw » 44, we are not concerned with Eqs. (13) and (14). Thus, following Eq. (12),
the resonant phonon scattering relaxation rate ;' corresponding to kw > 44
can be expressed as

Tt = HFA@W[fo(T) + f(T)] (18)

where Hy, = H; + Hj; H, is proportional to the 4™ power of the shear deform-
ation potential, and also contains some terms related to the band structure of
the sample under study. In the lack of such data, H, is taken as an adjustable param-
eter. If Eq. (18)is expressed in terms of a dimensionless parameter (x = hiw/kgT),
it reduces to

7t = H(1 + 6x%)~8x* (19)

where H = H,[fy(T) + f(T)1(kgT/k)* and 6 = (r3/4v®) (kT/h)?. Thus, the com-
bined scattering relaxation rate used in the present analysis of the lattice thermal
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conductivity of Mg,Sn can be expressed as
B R | —1 —1 —1 -1
.- = 1 + Tpt + Ty + TSph + T4ph (20)

and its complete form is given in Table 7.

Table 7
Combined scattering relaxation rates used in the analysis of the lattice thermal conductivity
of Mg,Sn
o . Temperature
Expressions ranges

Combined scattering relaxation rates for transverse phonons 77k
gl 4+ Awt 4+ Hx¥(1 + 6x)~% 4+ (Brny + Bry e OwTt + Byw?T? T< 36
T3l + Awd + Hx¥(1 + 6x8) 78 + (Brn; + Brue ™ w3 + Bypw?T? 36< T'< 46
5l 4+ Awt 4+ Hx¥(1 + 6x3)73 4 (Bruy + Bryse ™ DwT? + Bypw?T? 46 < T< 68
5l 4+ Awt 4 Hx¥(1 + 6x2) 8 + (Byns + Broge ®*DwT + By wT? T< 68
Combined scattering relaxation rates for longitudinal phonons 7 %
Tl 4 Awt + Hx(1 + 8xD78 + (B + Bry e DT + By wT? T< 46
75+ Awt 4+ Hx¥(1 4+ 6x) 7% 4+ (Bini + Brue O wiT? + By wiT? 46 < T< 68
15l 4+ Awt+ Hx¥1 + 6x3) %+ (Bine + Brose O OwiT + By wiT? T< 68
The three-phonon scattering strengths (B's) are related to each other as®

By = 36Bx Bix, = 4685

Byxs = 46Bx, Brx. = 68B;x,

Byxs; = 68B1x:
where X stands for N and U.
By and By are related by®

Byn = By exp (—0/aT), where T = 300 K and Y stands for T and L.

2 — ref. 11.
® — refs. 26—28.

The constants relating to the dispersion curve are calculated with the help of
the dispersion curve measured by Kearney et al. [65]. For the simplicity of cal-
culations, 13! and H are taken to be the same for transverse and longitudinal
phonons in the present analysis, and are calculated at 4 and 6 K, respectively.
The constants relating to the resonant phonon scattering relaxation rate ;' are
taken from the earlier report of Dubey [16]. The point-defect scattering strength A4
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and the three-phonon scattering strengths Byy and By y are calculated at 10 and
20 K (near the conductivity maxima), respectively, similarly as for Mg,Si. The four-
phonon scattering strengths Byr and By, are also estimated similarly as for
Mg,Si, as discussed in section III. Thus, all the constants used in the calculation
of the lattice thermal conductivity of Mg,Sn are listed in Table 4, together with
those for Mg,Si.

1
5
o 10
[
=
g 4
g 4.0
5
1.0
04
oal- o Experimental points
: —= Calculated valves
Mg, Si
0041
| i 11 ! | g
4 10 40 100 400 1000

Temperature , K

Fig. 4. The total lattice thermal conductivity of Mg,Sn in the temperature range 2— 1000 K.
The solid line represents the calculated values, and circles are the experimental points
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—
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0 | 1 ] | | -
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Fig. 5. The percentage contributions due to transverse and longitudinal phonons towards
the total lattice thermal conductivity of Mg,Sn. The solid line represents the percentage
contribution due to transverse phonons, while the dotted line is that due to longitudinal

phonons
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Fig. 6. The percentage contributions due to three-phonon N and U-process scattering relaxa-
tion rates towards 75 for Mg,Sn. The dotted line is the percentage contribution due to
the three-phonon normal process scattering relaxation rate (%75 n), and the solid line is

The percentage contribution of the three-phonon scattering relaxation rate v}, r towards the
combined scattering relaxation rate vz % for transverse phonons for Mg,Sn in the absence of
fcur-phonon processes, for four different values of the phonon frequencies. wy,, is the maxi-
mum frequency of transverse phonons

X % Tioh, T % Tiom, T % Gon,T % ok, T
forw = 1jdwmax | forw = 1]2wnpax | for w = 3/4wmax for w = wmax
1000 99.991 99.947 99.827 99.593
900 99.989 99.941 99.805 99.541
800 99.988 99.932 99.776 99.473
700 99.986 99.920 99.738 99.384
600 99.983 99.904 99.685 99.259
500 99.978 99.880 99.605 99.072
400 99.971 99.840 99.475 98.769
300 99.958 99.765 99.229 98.199
200 99.925 99.583 98.638 96.843
100 99.793 98.857 96.330 91.748
90 99.760 98.679 95.775 90.568
80 99.719 98.456 95.086 89.126
70 99.667 98.172 94.219 87.348
60 99.545 97.519 92.264 83.476
50 99.329 96.379 88.980 77.377
40 98.783 93.582 81.563 65.204
30 96.592 83.589 60.713 39.562
20 84.830 50.124 23.366 11.438
10 25.904 5.910 1.870 0.801
8 12.522 2.508 0.774 0.330
6 4.333 0.807 0.246 0.105
4 0.887 0.161 0.049 0.021
2 0.056 0.010 0.003 0.001
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Table 9

The percentage contribution of the three-phonon scattering relaxation rate 73}y towards

the combined scattering relaxation rate 71 for longitudinal phonons for Mg,Sn in the absence

of four-phonon processes, for four different values of the phonon frequencies. wp.y is the
maximum longitudinal phonon frequency

K % Tiph, L % Toh,L % Toh L % Tih,L
’ forw = 1/dwmay | forw = 1/2wmax | for w = 3/4wmax | for w = wmax
1000 99.950 99.965 99.921 99.860
900 99.989 99.960 99.911 99.842
800 99.988 99.954 99.898 99.819
700 99.985 99.947 99.880 99,788
600 99,982 99.936 99.856 99.745
500 99.978 99.919 99.820 99.680
400 99.971 99.893 99,760 99.574
300 99.957 99.842 99.647 99.375
200 99.923 99.720 99,375 98.894
100 99.789 99.230 98.293 97.008
90 99.756 99.110 98.029 96.552
80 99.714 98.959 97.699 95.984
70 99.661 98,766 97.280 95.268
60 99.537 98.322 96.319 93.643
50 99,317 97.541 94.657 90.887
40 98.761 95.601 90.660 84.530
30 97.094 90.108 80.270 69.609
20 90.817 72.945 54.630 40.401
10 55.281 25.206 13.082 7.811
8 38.761 14.716 7.155 4158
6 21.075 6.785 ! 3.149 1.797
4 7.332 2.111 0.954 0.539
2 i 0.979 0.269 0.120 0.068

From the constants reported in Table 4 and the combined scattering relaxation
rates in Table 7, the total lattice thermal conductivity of Mg,Sn has been cal-
culated in the entire temperature range 2— 1000 K by determining the separate
contributions due to transverse and longitudinal phonons with the help of numer-
ical integration of the conductivity integrals, similarly as for Mg,Si, and the
result obtained is shown in Fig. 4. The percentage contributions %Ky and %K;,
due to transverse and longitudinal phonons, respectively, are also calculated, and
the results obtained are reported in Fig. 5. The percentage contributions of T?,_p]h,N
and 75, y towards T3, have also been determined to examine the dominating
nature of one over the other, similarly as for Mg,Si, and the results obtained are
reported in Fig. 6. The percentage contribution of 7 towards the combined
scattering relaxation rate has been calculated for this sample too, similarly as for
Mg,Si, to inspect dominating nature of 5}, over 13", 7" and t;'?, and the results
obtained are listed in Tables 8 and 9.
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Comparative study of the present analysis with the previous studies

In this section, a comparative study of the present analysis with the previous
studies has been made to consider the value of the present study. Martin and
Denielson [58] analyzed the data of the lattice thermal conductivity of Mg,Sn
in the temperature range 4- 300 K in the frame of the Callaway integral [5].
From Tables 1 and 2, it is clear that the expression they used (in the frame of the
Callaway integral) for 75} is valid for longitudinal phonons alone. At the same
time, they did not make any distinction between transverse and longitudinal
phonons. They used the w! dependence for the resonant phonon scattering re-
laxation rate, which is not valid for Aw > 44. As a result of the above facts, they
could not get good agreement between calculated and experimental values above
50 K (see Figs. 4 and 5 of ref. 58). Later, it was studied by Kumar and Verma [64}
in the same temperature range, using the two-mode conduction of phonons
proposed by Holland [6]. From Table 2, it is quite clear that (in the frame of
Holland’s model) they calculated the contribution of longitudinal phonons
without considering the three-phonon U-processes in the entire range of the
Brillouin zone. It is also very clear that they did not consider the three-phonon
N-processes in the range 1/2 @ua — Gmax> @0d three-phonon U-processes in the
range 0— 1/2 ¢,,..» in the calculation of the lattice thermal conductivity due to
transverse phonons. This means that they considered only one process (either
an N or a U-process) to calculate the lattice thermal conductivity of Mg,Sn.
At the same time, they used Herring’s relations [1], i.e. 751 aT* and 55,  aT2,
in the entire temperature range, though these are valid at low temperatures only.
At the same time, they could not get good agreement between calculated and
experimental values of the lattice thermal conductivity of Mg,Sn (see Fig. 1
of ref. 64).

Following Kumar and Verma, Martin [66] tried to explain his experimental
data of the lattice thermal conductivities of Mg,Sn and Mg,Si in the temperature
ranges 4— 700 K and 4—300 K, respectively, by calculating the lattice thermal con-
ductivities in the frame of the Holland model. This means that his study is similar
to that of Kumar and Verma discussed above, except that he analysed up to
700 K. The lattice thermal conductivities of Mg,Sn and MgSi were further studied
by Dubey [16] in the frame of the Sharma — Dubey — Verma (SDV) model [8— 10],
in the temperature ranges 4—700 K and 4—300 K, respectively, and by Misho
and Dubey [67] in the frame of the expression for 7.,/ proposed by Joshi and
Verma [11] in the entire temperature ranges 4— 1000 K and 3— 500 K, respect-
ively. From Table 2, it is clear that Dubey could not include the three-phonon
N-processes and Misho and Dubey considered the contribution due to the three-
phonon normal processes only, in their calculations of the lattice thermal con-
ductivities of the above samples. However, in these analyses they were able to
incorporate the Guthrie expression [7] for the temperature exponent for the
three-phonon scattering relaxation rates. At the same time, a continuous temper-
ature exponent m for the three-phonon scattering relaxation rates was used for
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the first time by Dubey in the analysis of the lattice thermal conductivities of Mg,Sn
and Mg,Si.

From Table 3 and 7, it is clear that for the first time the contributions of both
N and U-processes have been included in the same conductivity integral in the
analysis of the lattice thermal conductivities of Mg,Sn and Mg,Si at low as well
as at high temperatures. The temperature exponent for the three-phonon scattering
relaxation rates used in the present analysis is also free from Guthrie’s comments
[7, 68]. The contribution due to four-phonon processes towards the total lattice
thermal resistivity is also considered at high temperatures.

Results and discussion

With the help of Figs. 1 ard 4, one can see that the agreement between the cal-
culated and experimental values of the lattice thermal conductivities of Mg,Si
and Mg,Sn is very good in the entire temperature range 2— 1000 K. This means
that the expression t34 = (Bny + Bye ®°T) g(w) T™ proposed by Dubey and
Misho gives a good response to the experimental data of the lattice thermal con-
ductivity. From Figs. 2 and 5, it can be concluded that most of the heat is carried
by the transverse phonons alone, which is similar to the findings of the previous
workers. It is also similar to the result obtained in the frame of the variational
technique [69— 71]. At the same time, it is necessary to state that the nature of the
variation of %Ky and %K; is very similar to those for Si obtained by Dubey [27]
in the frame of Dubey and Misho’s expression for the three-phonon scattering
relaxation rates. The variations of %55,y and %7y, v With temperature can be
seen in Figs. 3 and 6 for Mg,Si and Mg,Sn, respectively; these are very similar
to those for Ge, Si, GaAs and InSb obtained by Dubey et al. [26 —28]. From these
Figures, it is clear that at low temperature 73, y dominates over t3,}, y, Whereas
Tpn,u dominates over Tapp, n at high temperatures, which is in agreement with the
findings of the earlier workers.

At low temperatures, the temperature exponent m tends to 4 and 3 for trans-
verse and longitudinal phonons, respectively. At the same time, due to the large
value of O, the exponential term exp(— @/aT)becomes very small at low temper-
atures, which results in a negligibly small contribution of the three-phonon
U-processes as compared to the contribution due to the three-phonon N-processes
at these temperatures. This can also be seen in Figs. 3 and 6. As a result, the ex-
pression for 73, used in the present analysis reduces to Ty, ¢ = BynwT* for trans-
verse phonons, and T35, 1, = By xw?T? for longitudinal phonons. With the help
of the above facts, it can be concluded that at low temperatures, the expression
for 75, used in the present work reduces to the Herring relations, which give a
good response to the low-temperature lattice thermal conductivity data.

At high temperatures, the temperature exponent m tends to unity for both
modes, transverse and longitudinal phonons, and the term exp(— @/aT)reduces
to unity due to the large value of T. Thus, the expression for 75}, used in the present
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calculations can be approximated to by i, ¢ = BywT for transverse phonons,
and 73, ¢ = Byw*T for longitudinal phonons, which results in a 7! temperature-
dependence for the lattice thermal conductivity at high temperatures and is
similar to the result obtained by previous workers based on theoretical as well
as experimental methods.

The contribution of 735, towards the combined scattering relaxation rates can
be studied in more detail with the help of Tables 5, 6, 8 and 9. From these Tables,
it is quite clear that at high temperature, the three-phonon scattering relaxation
rates dominate over boundary, point-defect and resonant phonon scattering re-
laxation rates. Thus, it can be concluded that at high temperatures, the lattice
thermal resistivity of a sample is mainly due to the phonon-phonon scattering
processes. A similar conclusion is reported by Hamilton and Parrott [69] and also
by Srivastava [70, 71] based on the variational techniques. It is also similar to
the results obtained by Dubey et al. [26 —28] for Ge, Si, GaAs and InSb.

*

The author wishes to express his thanks to Dr. R. A. Rashid, Dr. R. H. Misho and Dr.
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REsuME — On a étudié, dans tout Vintervalle de températures allant de 2 a2 1000 K, la conduc-
tibilité thermique du réseau de Mg,Si et Mg,Sn, en se servant de I’expression récemment
proposée par Dubey et Misho pour la vitesse de relaxation de la diffusion a trois phonons.
On a trouvé un trés bon accord entre les valeurs calculées et expérimentales de la conductibi-
lité thermique du réseau dans tout lintervalle de températures étudié. La contribution indivi-
duelle des phonons transversaux et longitudinaux, 4 la conductibilité thermique totale du
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réseau a été étudiée de méme, en calculant leurs taux respectifs de contribution. On a étudié,
pour les deux échantillons, Mg,Si et Mg,Sn les taux respectifs de contribution dus aux proces-
sus de vitesses de relaxation de diffusion a trois phonons normaux et inversés vis-a-vis de la
vitesse de relaxation de diffusion a trois phonons. On a étudié de méme le pourcentage de
contribution de la vitesse de relaxation de diffusion a trois phonons i la vitesse de relaxation
de diffusion, résultante, pour des phonons transversaux et longitudinaux, pour quatre valeurs
différentes de fréquences des phonons. Le réle des processus 4 quatre phonons est aussi inclus
dans la présente analyse.

ZUSAMMENFASSUNG — Die Gitter-Warmeleitfahigkeit von Mg,Si und Mg,Sn wurde im ganzen
Temperaturbereich von 2 bis 1000 K im Rahmen des von Dubey und Misho vorgeschlagenen
Ausdrucks fiir die Drei-Phonon-Streuungs-Relaxationsgeschwindigkeit analysiert und eine
sehr gute Ubereinstimmung der berechneten und Versuchswerte der Gitter-Wirmeleitfihig-
keit im ganzen untersuchten Temperaturbereich wurde gefunden. Der den transversalen und
longitudinalen Phononen zuzuschreibende getrennte Beitrag zur gesamten Gitter-Warmeleit-
fihigkeit wurde durch Berechnung ihres prozentualen Beitrags ebenfalls studiert. Die den
Drei-Phonon-Normal- und Umklapp-Prozessen der Streuungs-Relaxationsgeschwindigkeiten
zuzuschreibende prozentuale Anteil zur Drei-Phonon-Streuungs-Relaxationsgeschwindigkeit
wurde fiir beide Proben, fiir Mg,Si wie fiir Mg,Sn gleichsam untersucht. Der prozentuale
Beitrag der Drei-Phonon-Streuungs-Relaxationsgeschwindigkeit zur kombinierten Streuungs-
Relaxationsgeschwindigkeit wurde sowohl fiir transversale als auch fiir longitudinale Phononen
fiir vier verschiedene Werte der Phononfrequenzen ebenfalls untersucht. Die Rolle der Vier-
Phonon-Prozesse wurde in die vorliegende Analyse ebenfalls aufgenommen.

Pesiome — B pamkax HepasHo npegyioxentoro Jabei n Mutio Bipaxkenust ajist TpexGoHOH0BOMN
PeNaKCAUMOHHON CKOPOCTH PACCesTHMS MCCIIEA0BAHA PELUETOYHAA TEPMUYECKast ITPOBOAUMOCTD
Mg,Siu Mg,Sn Bobnactu temnepaTyp 2—1000 K. VcraHOBIIEHO X0Opollee COrTacHe MEXAY Bbl-
YUCJIECHHBIM M JIKCIOCPUMEHTANBHBIM 3HAYEHHEM PELICTOYHOR TEPMHUYECKOM NMPOBOAUMOCTH BO
BCEH UCCIIeIOBAHHON TeMIepaTypHoi obmacTu. beut Taxxke MccienoBaH NPOLUEHTHbLA BKIAT OT-
[ENBHO TIONEPEYHBIX M MPOAOIILHBIX GOHOHOB B OOLIYIO PEIICTOMHYIO TEPMHYECKYIO ITPOBOIH-
MocTb. Jutst 060ux 00pa3uoB MCCIenN0OBaH NPOUEHTHBIA BKJIAZ HOPMAJIBHBIX [IPOLIECCOB pacces-
HHS M NPOLECCOB nepedbpoca B TpexhOHOHOBYIO PENaKCALMOHHYIO CKOPOCTB paccesuusi. ITpo-
LIEHTHBbIA BKJIad TPEeX(POHOHOBOH pPelaxCalHOHHOW CKOPOCTH PacCesHUS B KOMOMHUPOBAHHYIO
PeSIAKCAITMOHHYIO CKOPOCTE PAacCesnusT ObUT U3YUEH KaK IS TPOOOJIBHBIX, TAK K ISl [IONIEPEUHBIX
(bOHOHOB TNPH HCITOJIB3OBAHMN YETbIPEX PA3/JIMYHBIX 3HAYCHU (POHOHOBBLIX dacTOT. B ananms
BKJIFOYEHA POJIb YeThIPEX(HOHOHOBBIX IPOIIECCOB.
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